CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

MATHEMATICS (SYLLABUS D)

Candidates answer on the Question Paper.
Additional Materials: Geometrical instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
If working is needed for any question it must be shown in the space below that question.
Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

1 (a) Evaluate $3+5(3-1.4)$.

Answer

(b) Evaluate 0.2×0.07.

Answer

2 (a) Evaluate $3 \frac{2}{3}-2 \frac{4}{5}$.

Answer
(b) Express $\frac{48}{84}$ in its lowest terms.

3 (a) Write the following numbers in order of size, starting with the smallest.
$0.67 \quad \frac{7}{9} \quad \frac{2}{3} \quad 66 \%$

Answer, ,.............. , , [1]
(b) During one month, the volume of perfume in a bottle decreased from 5 ml to 4 ml .

Calculate the percentage decrease.

Answer
\% [1]

4 (a) Add 55 minutes to 2.4 hours, giving your answer in hours and minutes.

Answer \qquad hours \qquad minutes [1]
(b) The mass of a bag of sugar is given as 1.5 kg , correct to the nearest tenth of a kilogram.

Write down the upper bound of this mass, giving your answer in grams.

5 Given that $\mathrm{f}(x)=\frac{2 x+3}{5 x}$, find $\mathrm{f}^{-1}(x)$.

6 By making suitable approximations, estimate the value of $\frac{304.3 \times \sqrt{15.98}}{0.1975}$.

7 Find the values of x and y, where

$$
2\binom{x}{7}=3\binom{-2}{y}-\binom{4}{-2} .
$$

```
Answer x=
    y=

8 A large tank contained \(2.3 \times 10^{6}\) litres of oil.
During a 4 week period, \(1.2 \times 10^{5}\) litres were used.
(a) Calculate how many litres of oil remain in the tank after the 4 weeks.

Give your answer in standard form.

Answer
(b) Giving your answer in standard form, calculate the average number of litres used each week.

9 It is given that \(13<7-2 x<18\) has the solution \(a<x<b\).
Find the values of \(a\) and \(b\).
\[
\begin{aligned}
\text { Answer } \quad a & = \\
b & =.
\end{aligned}
\]

10 Factorise completely \(2 x y-3 x-10 y+15\).
parallelogram
rectangle
rhombus
square

Which of these quadrilaterals have
(a) exactly 2 lines of symmetry,

Answer
(b) rotational symmetry of order 2,

Answer
(c) diagonals that are equal?

Answer

12 The diagram shows a thermometer, with a circular dial, that records temperatures in \({ }^{\circ} \mathrm{C}\).
(a) Write down the temperature indicated by the pointer.


Answer \(\qquad\) \({ }^{\circ} \mathrm{C}\) [1]
(b) When the temperature increases from \(-20^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\), the pointer turns through an angle of \(300^{\circ}\).

Calculate the angle through which the pointer turns when there is a \(7^{\circ} \mathrm{C}\) rise in temperature.

Answer
(c) On one particular day, the temperature at 1 a.m. was \(4^{\circ} \mathrm{C}\).

By 6 a.m. it had fallen by \(9^{\circ} \mathrm{C}\).
Calculate the temperature at 6 a.m.
\(\qquad\)

13 A map has a scale of 2 cm to 5 km .
(a) Express this scale in the form \(1: n\).
\[
\text { Answer } 1:
\]
[1]
(b) The actual distance between two places is 35 km .

Calculate the distance on the map between these two places.

Answer \(\qquad\) cm [1]
(c) On the map, the area of a lake is \(8 \mathrm{~cm}^{2}\).

Calculate the actual area of the lake.

14 The table shows the results when a 6 -sided die was thrown 50 times.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Score & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Frequency & 7 & 7 & 6 & 9 & 11 & 10 \\
\hline
\end{tabular}
(a) Write down the modal score.

> Answer
(b) Calculate the mean score.

\section*{Answer}
\(15 \mathscr{E}=\{x: x\) is an integer and \(x>5\}\)
\(\mathrm{P}=\{x: x\) is a prime number \(\}\)
\(\mathrm{F}=\{x: x\) is a multiple of 4\(\}\)
\(\mathrm{S}=\{x: x\) is a multiple of 6\(\}\)
The Venn diagram shows the Universal set and the set F.
(a) Draw and label the two sets P and S to complete the Venn diagram.
(b) Write down a possible element \(y\) such that \(y\) is an even number and \(y \in(F \cup S)^{\prime}\).
\[
\text { Answer } y=
\]

16 The diagram shows a solid prism of length 20 cm .
The cross-section, \(A B C D\), is a trapezium.
\(A B=2 \mathrm{~cm}, B C=5 \mathrm{~cm}, C D=6 \mathrm{~cm}\),
\(D A=3 \mathrm{~cm}\) and angle \(A D C=90^{\circ}\).

(a) Calculate the area of trapezium \(A B C D\).
\(\qquad\) \(\mathrm{cm}^{2}\) [1]
(b) Calculate the total surface area of the prism.


In the diagram, \(B\) is the point \((8,2)\).
The equation of the line \(A B\) is \(y=2\) and the equation of the line \(A C\) is \(2 x-y=3\). \(B C\) produced passes through the origin.
(a) \(A C\) produced intersects the \(y\)-axis at \(D\).

Find the coordinates of \(D\).
(b) The region inside triangle \(A B C\) is defined by three inequalities.

One of these is \(y<2\).
Find the other two inequalities.
\(\qquad\)

18 (a) Simplify \(\left(3 a^{4}\right)^{2}\).

\section*{Answer}
(b) Evaluate \(\left(\frac{1}{4}\right)^{-2}\).
(c) Given that \(x^{3}=27^{0}\), find \(x\).
\[
\text { Answer } x=
\]
(d) Evaluate \(\frac{12^{\frac{1}{2}}}{3^{\frac{3}{2}}}\).

19 A regular polygon has interior angles of \(160^{\circ}\).
(a) Calculate the number of sides of the polygon.

\section*{Answer}
(b)


The diagram shows three sides, \(A B, B C\) and \(C D\), of this polygon.
(i) Calculate \(B \hat{A} C\).
(ii) Calculate \(A \hat{C} D\).

20 A series of shapes, made of matchsticks, is shown below.

(a) Draw Shape 4 .
(b) The table shows the numbers of matchsticks used to make Shapes 1 and 2.
\begin{tabular}{|c|c|c|c|c|}
\hline Shape & 1 & 2 & 3 & 4 \\
\hline \begin{tabular}{c} 
Number of \\
matchsticks
\end{tabular} & 12 & 18 & & \\
\hline
\end{tabular}

Complete the table for Shapes 3 and 4.
(c) Find an expression, in terms of \(n\), for the number of matchsticks used to make Shape \(n\).

Answer
(d) Explain why there is not a shape that is made of 100 matchsticks.

Answer \(\qquad\)
\(\qquad\)
\(\qquad\)

21 The time taken to fill a tank with water varies inversely as the area of cross-section of the inlet pipe. The time taken is 40 minutes when the area is \(3 \mathrm{~cm}^{2}\).
(a) Find the number of minutes taken to fill the tank when the area is \(5 \mathrm{~cm}^{2}\).

\section*{Answer}
(b) It is given that the area is \(A\) square centimetres.

Find the expression, in terms of \(A\), for the number of minutes taken to fill the tank.

> Answer
(c) Water flowed into the empty tank through a pipe of area \(4 \mathrm{~cm}^{2}\).

It flowed for 9 minutes.
Find, in its simplest form, the fraction of the tank that now contained water.
\(22 \quad \mathbf{A}=\left(\begin{array}{rr}5 & 2 \\ -1 & 1\end{array}\right)\)
(a) Find the determinant of \(\mathbf{A}\).
\(\qquad\)
Answer
(b) Write down \(\mathbf{A}^{-1}\).

\section*{Answer}
(c) Find the matrix \(\mathbf{X}\), where \(\mathbf{A X}=\binom{11}{-5}\).


Ali and Ben each made a journey between two towns, P and Q , that are 60 km apart. These two journeys are shown on the travel graph.
(a) Calculate Ali's speed.
\(\qquad\)
(b) Find the number of minutes after 3 p .m. that Ali and Ben passed each other.
Answer
(c) Find how far Ben had travelled when he met Ali.

> Answer
\(\qquad\) km [1]
(d) Chris left P at \(3 \mathrm{p} . \mathrm{m}\). and travelled to Q at a speed of \(30 \mathrm{~km} / \mathrm{h}\).

On the diagram, draw the graph that represents Chris's journey.


In the diagram, \(A B C D\) is a parallelogram.
\(P\) is the midpoint of \(B C\).
\(D Q: Q P=1: 2\).
\(\overrightarrow{A B}=\mathbf{p}\) and \(\overrightarrow{A D}=\mathbf{q}\).
(a) Express \(\overrightarrow{D P}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\).

> Answer
(b) Express \(\overrightarrow{D Q}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\).

Answer
(c) Express \(\overrightarrow{A Q}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\), giving your answer in its simplest form.

Answer
(d) \(R\) is the point on \(B C\) produced such that \(\overrightarrow{B R}=k \overrightarrow{B P}\).
(i) Express \(\overrightarrow{A R}\) in terms of \(\mathbf{p}\) and \(\mathbf{q}\) and \(k\).

Answer
(ii) Given that \(A, Q\) and \(R\) lie on a straight line, find the value of \(k\).
\[
\text { Answer } k=
\]

25 The diagram below shows quadrilateral \(A B C D\).
(a) Measure \(A \hat{B} C\).
\[
\begin{equation*}
\text { Answer } \quad A \hat{B} C= \tag{1}
\end{equation*}
\]
(b) On the diagram, construct the locus of points, inside the quadrilateral, that are

I 4 cm from \(A D\),
II equidistant from \(A\) and \(D\).
(c) On the diagram, shade the region inside the quadrilateral, containing the points that are more than 4 cm from \(A D\) and nearer to \(D\) than to \(A\).
(d) The point \(P\) is 4 cm from \(A D\) and as near as possible to \(C\).

Mark, and label, the position of \(P\) on the diagram.


Question 26 is printed on the following page.

26 In the diagram, \(A B\) touches the circle, centre \(O\), at \(T\).
\(O B\) intersects the circle at \(C\).
(a) State, with a reason, the value of \(B \hat{T} O\).


Answer \(B \hat{T} O=\) \(\qquad\) because \(\qquad\)
\(\qquad\)
(b) Given that \(T B=40 \mathrm{~cm}, C B=10 \mathrm{~cm}\), and the radius of the circle is \(x\) centimetres, form an equation in \(x\), and hence find the radius of the circle.

\section*{Answer}
\(\qquad\) cm [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.```

